
1

Paper 3261-2015

Creating a Data Quality Scorecard
Tom Purvis, Qualex Consulting Services, Inc.

Clive Pearson, Qualex Consulting Services, Inc.

ABSTRACT

The approach in this paper shows users how to develop a data quality scorecard based on rules, and
judged against a set of standards set by the user.

Each rule (a/k/a metric) has a standard that determines whether it passes, fails, or needs review (a
green, red, or blue score). A rule can be as simple as: Is the value for this column missing?, or is this
column within a valid range? Further, it includes comparing a column to one or more other columns, or
checking for specific invalid entries. It also includes rules that compare a column value to a lookup table
to determine whether the value is in the lookup (a/k/a reference) table.

Users can create their own rules and each column can have any number of rules. For example, a rule can
be created to compare a dollar column to a range of acceptable values. The user can determine that it is
expected that up to two percent of the values are allowed to be out of range. If two to five percent of the
values are out of range, then data should be reviewed. And, if over five percent of the values are out of
range, the data is not acceptable.

The entire table has a color-coded scorecard showing each rule and its score. Summary reports show
columns by score and distributions of key columns. The scorecard enables the user to quickly
assess whether the SAS data set is acceptable, or whether specific columns need to be reviewed.

Drill-down reports enable the user to drill into the data to examine why the column scored as it did. Based
on the scores, the data set can be accepted or rejected, and the user will know where and why the data
set failed.

The approach can store each scorecard data in a data mart. This data mart enables the user to review
the quality of their data over time. It can answer questions such as: is the quality of the data improving
overall? Are there specific columns that are improving or declining over time? What can we do to improve
the quality of our data?

INTRODUCTION
Many users would like to check the quality of data after the data integration process has loaded the data
into a data set or table. SAS has many products that automate the data integration and/or data quality
process. However, if the user does not own these products, or the process does not warrant this level of
automation, then a Base SAS solution might be more appropriate. This paper describes such an
approach.

This scorecard is not intended to replace the quality control of the data integration or ETL process. It is a
supplement to the ETL process. The programs are written using only Base SAS® and Output Delivery
System (ODS), macro variables, and formats. This paper shows how to: (1) use ODS HTML; (2) color
code cells with the use of formats; (3) use formats as lookup tables; (4) use INCLUDE statements to
make use of template code snippets to simplify programming; and (5) use hyperlinks to launch stored
processes from the scorecard.

2

A FLOWCHART OF THE PROCESS

Figure 1. Flowchart of the Scorecard Process

PROCESS DESCRIPTION
RULES SPREADSHEET:

As described in the following pages, this data quality check process begins with a spreadsheet of rules (a
tab is created for each file being reviewed – in the flowchart these files are shown as File01 .. File n).
There is no limit to the number of file types included. Each rule represents one check performed on one
column. Each rule is executed on each row of data.

Examples of common rules include:

• Is the column value blank?

• Is the date column value (e.g., birthdate) after today?

• Is the value in the column found in a reference table? (e.g., is postal code valid? Is this code in
the dimension table?)

• Is the column value blank but other column is not blank? (e.g., a customer ID is present but
customer name is blank)

• Is column A greater than Column B? (any column with any comparison to any other column)

Drilldown Report

File n
File 04

File 03
File 02

FIle 01
Input Data

SAS Datasets

Program n
Program 04

Program 03
Program 02

Program 01

Metric
Programs

Format Creation

Program

Dim x
Dim G

Dim F
Dim E

Dim D
Dim C

Dim B
Dim A

Reference Data

SAS Datasets

FMT DIM x

Formats
FMT DIm G

Formats
FMT DIM F

Formats
FMT DIM E

FormatsFMT DIM D

Formats
FMT DIM C

FormatsFMT DIM B

FormatsFMT DIM A

Formats

Standards

Excel Spreadsheet

File n
File 04

File 03
File 02

File 01

Metric
SAS Datasets

Import Standards

SAS EG Process Flow

File n
File 04

File 03
File 02

File 01
Standards

SAS Datasets

Scoring and
Reports

Program

File n

Report
File 04

Report

File 03

Report

File 02

Report

File 01

Report

Etc.
Col compared to Date

Col Not in Reference
NumColNull

CharColNull

Template
Programs

Color Codes
SAS Datasets
SAS Programs

Excel Spreadsheet
SAS Formats
SAS Output

Flowchart of Data Quality Process

03 April 2014

3

Each rule is assigned a metric ID to uniquely identify the rule. (For this paper “metric” and “rule” are
synonyms).

Each rule is also assigned a set of percentages to score the rule into three levels (categories): Green,
Blue, and Red. (The user can change the colors).

For example, if rows for column A are blank for 0 to 10 percent of all records then this rule is scored as
“Green”. If the rule scores greater than 10 percent but less than 20 percent, then the rule is scored as
“Blue”. If the rule is scored over 20 percent with blank values then the rule is scored as “Red”.

These thresholds are set by the user and can be changed at any time. Threshold levels can be set so
that only two levels apply.

Within the spreadsheet each rule is defined and the ranges are set for each level (color). There is no limit
to the total number of rules, and a column can have multiple rules, as long as each rule is a separate row
in the spreadsheet.

Table 1 is a sample standards spreadsheet:

Table 1. Standards Spreadsheet

This spreadsheet defines each rule, its column, and its thresholds. One tab in the spreadsheet is used
for each file type being checked.

The spreadsheet resides in any directory that the user chooses. A simple SAS Enterprise Guide (SAS
EG) project imports each tab of the spreadsheet into a permanent SAS dataset placed in the data path.
The path in the scoring program can be changed to point to any number of scoring datasets if the user
wants to use different scores or rules for different sources.

METRIC PROGRAMS:

Each input data file type has a metric program that consists of a series of rule (metric) templates. A
template is small set of program lines that use SAS macro variables to make the template specific to a
rule defined in the spreadsheet. One template represents one type of rule (e.g., does the column has
blank values?). A template can be used over and over again for whatever rules apply. There is no limit to
the number of templates.

Sample of Metric Program: Highlighted lines show the calls to the template programs.

data work.metrics ;
length metric_id $ 16 rowfailed rows_processed 8 ;
set sasin.&inputname. end=end ;
keep metric_id rowfailed rows_processed ;
rows_processed + 1 ;

/******** Rule XXXX ***********/
%let metric_id = RuleXXXXX ;

4

%let col = Column_ZZZZ;
%include "&path.\template_name.sas" / source2
… A section of code for each rule.

For checks against reference tables, a SAS format is used for the specific case of a rule matching a
column in the file to a reference table. Each reference table is read into a temporary SAS dataset and
then this data is used to create a SAS format. A rule is created and a template is added to the metric
program to check the value in the file to the format. If the value is not in the format then the row is
counted as “failed”.

For example, a reference file might contain all valid postal codes. A SAS format is created for these valid
postal codes. Each value for the column “postal code” in the file is compared to the SAS format and
those rows that do not match the format are counted as “failed”. The percentage of failed rows to all rows
in the file is compared to the thresholds set in the spreadsheet to score the rule as Green, Blue, or Red.
There is no limit to the number of reference files used (but using a lot of formats may fill up memory).

Reference files are converted to SAS formats by a simple program that reads the data and creates a SAS
format. Each reference file creates one unique format and the format is named to be a mnemonic of the
reference file.

Sample Template file for calling a reference file via a SAS Format:

metric_id = "&metric_id." ;
if strip(&col.) NE " " and
 strip(put(&col.,&fmttest.)) = strip(&col.) then rowfailed = 1 ;
else rowfailed = 0 ;
output ;

%let metric_id = ; /* these lines reset the macro variables so they will not persist. */
%let col = ; /* these lines reset the macro variables so they will not persist. */
%let fmttest = ; /* these lines reset the macro variables so they will not persist. */

Below is sample code to create a reference format:

libname fmts "/sasdata/data/" ; /* This is the path where data is stored /*
options fmtsearch=(fmts) ; /* This option ensures the format library is searched by SAS */
%let type = C ; /* This creates a Character Format */
%let destin = fmtZIP ; /* The name of the format is fmtZIP */
%let source = zipcodes ; /* The source of the reference table is zipcodes */
%let length = 5 ;

data work.&source. ;
set fmts.&source. ;

start = substr(strip(ZIP9),1,&length.) ; /* The Zip format uses the first 5 digits */
label = "Found" ; /* In most reference files this would be the description
 and therefore the line would be label = columnxxx where
 columnxxx is the column of the description in the reference file
 Since there is no description for zip codes the text “Found”
 is used as a place holder.
 */
run ;
proc sort data=work.&source. ;
by start label ;
run ;

data work.&source. ;
set work.&source. ;
by start label ;
if last.start ; /* Only one record per unique value allowed. */
run ;

5

data fmts.&destin. ; /* This writes the format data under the same name as the format */
set work.&source. ;
fmtname = "&destin." ; /* The format name is the destination defined above */
type = "&type." ;
end = start ;
length = &length. ;
/*if length(strip(&start.)) NE &length. then delete ;*/
keep start end label type length fmtname ;
run ;
proc format cntlin=fmts.&destin. library=fmts.formats; /* This line creates the format */
run ;

Many types of reference files can be adopted as rules. This is specifically useful when the file contains
columns of codes and the database has dimension tables that describe the codes. Each dimension table
can be converted into a SAS format and each value for a column in file can be checked to ensure it has a
valid match in the dimension table. For example, if the file has a column for part number, and there is a
dimension (or other table of part descriptors), a rule can be created to count the number of invalid part
numbers. That is, rows in the files that contain a part number do not match any of the valid part
descriptors in the reference table.

Note that the formats are special tables loaded into memory. Too many formats used for
reference files or formats that are very large may cause the system to run out of memory.

6

SCORECARD REPORT (ONE PER FILE)

Section A: General Information

This section tells the user general information about the file, including number of columns and rows. A
summary score section shows how many columns scored within each level (color) and how many metrics
(rules) scored within each level. This summary gives the user a quick view of the data quality of file.

Output 1. Section A of the Report (General Information)

7

Section B: The Column Level Report (Partial List)

Section B of the report shows a detail report by column. This section shows each column and the
number of rules by score (color). This is a first level of detail to understand where the issues with the file
might reside.

Output 2. Section B of the Report (Column Summary)

8

Section C: The Column Details Report (Sample Partial List)

Section C of the report is a detail list of each rule showing the column being evaluated, the number of
rows that failed, the total number of rows processed, the percentage of rows that failed, and the score.

This part of the report also has a hyperlinked column for each rule that will launch any program the user
directs to further evaluate the detail. Since this action is so flexible and dependent upon the source file,
no example report is included in this paper.

Column Details Report

Column Name Test / Metric Rows Failed Rows Processed Percent Failed Score

Column Name Column Name: rows NULL 8 592 1.4% Fail

Column Name Column NULL 3 592 0.5% Fail

Column Name DOB: Date GT Run Date 2 592 0.3% Fail

Column Name DOB: Date LT 1900 2 592 0.3% Pass

Column Name DOB: Column NULL 6 592 1.0% Fail

Column Name Email: Column NULL 25 592 4.2% Fail

Column Name Name: Column NULL 9 592 1.5% Fail

Column Name Gender Column NULL 9 592 1.5% Fail

Column Name Gender: evaluate distinct values 13 592 2.2% Fail

Column Name Relationship: Column NULL 3 592 0.5% Fail

Column Name Last Name: Column NULL 4 592 0.7% Fail

Column Name Customer Id: Column NULL 18 592 3.0% Fail

Column Name Customer Id: start w/0 2 592 0.3% Fail

Column Name Customer Phone: Column NULL 6 592 1.0% Check

Output 3. Section C of the Report (Column Detail)

Section D: Frequency Analysis (no output shown)

Section 4 of the report is a frequency analysis of selected character columns (using PROC FREQ). This
section of the report is used for analysis of columns that cannot be described by a simple rule. In some
cases the user is interested in a frequency of values for a column. This information cannot be scored on
a row-by-row basis. For this analysis the report can show the top X values for selected columns and the

9

top X values for the length of the selected columns. (X is a number that is user selected at the time the
report is run).

For example, a user might wish to know the top 10 customer numbers to ensure that dummy numbers are
not included (e.g., 111111111, 999999999). Often, dummy or test values are accidently included in
production files. These dummy values are often seen much more frequently than valid values. Also,
reviewing the lengths of the customer numbers might show that some percentage of values is too small to
be valid customer numbers.

No section D report is included for numeric columns. However, a PROC MEANS or PROC UNIVARIATE
could be added to create such a report.

TAKING THE PROCESS FURTHER

TIME SERIES REVIEW

Each time the user runs this application they create one summary SAS dataset for a file for a time period.
By permanently storing these files the user can build a data mart of scores over time for every file type
processed.

This data mart has three important uses. First, it can be used to establish data-driven standards for what
can be expected from the input source. Standards can be adjusted if the reality of the data quality is
different (higher or lower) than the expected. Second, the data mart can be used to trend data quality by
file type and column over time. Data suppliers can be shown with confidence that their data quality is
improving or deteriorating. Third, if the user has multiple suppliers of common data (e.g., vendors), the
user can make inter-supplier comparisons of data quality to grade the suppliers against each other.

Building a data mart of quality scores has many advantages and provides the user more than a file-at-a-
time report.

CONCLUSION
The data quality scorecard solution is a simple but highly effective process that allows users to include
the important data quality review process within a legacy ETL process. The process requires only Base
SAS, is completely controlled by the user, and is highly flexible.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Tom Purvis Clive Pearson
Senior Consultant CEO
Qualex Consulting Services, Inc. Qualex Consulting Services, Inc.
email: tom.purvis@qlx.com email: clive.pearson@qlx.com
Skype: tompurvisjr www.qlx.com
mobile: +1 904-233-3355

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

10

SAMPLE CODE

SAMPLE TEMPLATE CODE

This code is a template used to determine if a character column is blank (null).

metric_id = "&metric_id." ;
if strip(&col.) = "" then rowfailed = 1 ;
else rowfailed = 0 ;
output ;

%let metric_id = ; /* reset macro variables */
%let col = ;

SAMPLE METRIC CODE

This code is a sample stored process showing how the templates might be used to count rows failed for
later scoring. Ultimately this code would include a section for each rule (metric) and there is one program
for each file type. The code highlighted in yellow below shows how the sample template code above
would be called.

*ProcessBody ;
/*filename _webout "<path>/htmlout.html" ;*/

%let inputname = <name of input file> ;
%let standard = <name of accompanying standard> ;

/* Parameters for Section D of report (character columns to review frequency) */

%let num = 3 ; /* how many columns to include in the table report must equal the list below */
%let col1 = <column name> ;
%let col2 = <column name> ;
%let col3 = <column name> ;
/* however many columns set in “let num =” should have a “let colN” statement */

libname sasin BASE "<path>" ;

libname fmts BASE "<path>" ;

%let path = <path>/includes/ ;
%let pathscore = <path>/programs/ ;

%let _ODSDEST=TAGSETS.HTMLPANEL;
%let _odsoptions = rs=none;
%let _odsstyle = &style ;
%let _ODSSTYLESHEET= ;

%let embedded_titles = yes ;
%let panelborder = 16 ;

ODS ESCAPECHAR= '^' ;

options device=activex fmtsearch=(fmts.formats) ; /* libname fmts must be set */

%STPBEGIN ;
ODS ESCAPECHAR= '^' ;

11

data work.metrics ;
length metric_id $ 16 rowfailed rows_processed 8 ;
set sasin.&inputname. end=end ; /* libname sasin must be set */
keep metric_id rowfailed rows_processed ;
rows_processed + 1 ;

/*First Rule XXXXXXX001 (e.g. Check NULL/Blank Value) */

/******** XXXXXXXXX001 ***********/

%let metric_id = XXXXXXXXX001 ;
%let col = <numeric column name> ;
%include "&path.numcolnull.sas" / source2 ; /* this calls template for number column is null */

/*Second Rule XXXXXXX002 (e.g. Check NULL/Blank Value for character column) */

/******** XXXXXXXXX002 ***********/

%let metric_id = XXXXXXXXX002 ;
%let col = <character column name> ;
%include "&path.charcolnull.sas" / source2 ; /* this calls template for character column is null */

/*Third Rule XXXXXXX003 (e.g. Check character column to ensure it is on reference list) */
%let metric_id = XXXXXXX003 ;
%let col = <character column>;
%let fmttest = $<character format name>. ; /* this format would have been previously created from reference files */
%include "&path.charformat.sas" /source2 ; /* this calls the template to check that a character column is found
 within a format */

.... Add as many rules here as are defined in the standards spreadsheet
run ;

/* this SQL summarizes the file above into one record per metric (rule) */
proc sql ;
create table work.&inputname._metrics as /* this table may or may not be permanent */
select metric_id ,
 sum(rowfailed) as rows_failed format=comma15.0 ,
 max(rows_processed) as rows_processed format=comma15.0 ,
 sum(rowfailed) / max(rows_processed) as percent_failed format=6.4
from work.metrics
group by metric_id
;
quit ;

%include "&pathscore.scorereport.sas" /source2 ; /* this calls the score report */
%stpend ;

SCORE REPORT CODE

%let metricfile = sasin.&inputname._metrics ;

proc sort data=work.&inputname._metrics
 ;
by Metric_ID ;
run ;

12

proc sort data=sasin.&standard
 out=work.&standard
 ;
by Metric_ID ;
where metric_id NE "" ;
run ;

data work.&inputname._scored ;
merge work.&inputname._metrics (in=m)
 work.&standard. (in=s)
 ;
by Metric_ID ;
length Score 8 ;
if m ;

/* this creates the hyperlink to the stored process for detail analysis
 it is set up to pass two macro variables as parameters ParamA and odsstyle
 but others can be added
*/
machine = "http://111.222.333.444:8080/" ;
engine = "SASStoredProcess/do?" ;
progpath = "_program=SBIP://METASERVER%2F<folder>%2F<folder>%2F<folder>%2F" ;
program = "<detail report name>" ;
paramA = "colname=" ;
odsstyle = "&_odsstyle." ;
 ;

/* this creates the hyperlink */
htmlvar = "<a href=" ||
"'" || /* beginning single quote for href */
trim(machine) ||
trim(engine) ||
trim(progpath) ||
trim(program) || '&' ||
trim(paramA) || strip(column_name) ||
'&_odsstyle=' || strip(odsstyle) ||
"'>" ;

Metric_ID_linked = htmlvar || strip(Metric_ID) || '' ;

Based_On = "Percent" ;

if Based_On = "Percent" then Measure = Percent_Failed * 100;
else if Based_On = "Rows" then do ;
 Measure = Rows_Failed ;
 if red_end = 999999999 then red_end = Rows_Processed ;
 end ;
if green_beg <= red_end then /* Lower is Better */
 do ; /* Lower Better */
 if Green_beg <= Measure <= Green_end then Score = 1 ; /* 0 <= x <= 50 */
 else if Green_end < Measure <= Blue_end then Score = 2 ; /* 50 < x <= 90 */
 else if Blue_end < Measure <= Red_end then Score = 3 ; /* 90 < x <= 100 */
 else Score = 0 ;
 end ;
else /* Higher is Better */
 do ; /* Higher Better */
 if Green_beg >= Measure >= Green_end then Score = 1 ; /* 100 >= x >= 90 */
 else if Green_end > Measure >= Blue_end then Score = 2 ; /* 90 > x >= 50 */
 else if Blue_end > Measure >= Red_end then Score = 3 ; /* 50 > x >= 0 */
 else Score = 4 ;
 end ;
label Metric_ID_linked = "Column Name"

13

 Metric_ID = "Metric_ID"
 Score = "Score"
 Rows_Failed = "Rows Failed"
 Rows_Processed = "Rows Processed"
 Percent_Failed = "Percent Failed"
 ;
run ;

proc sort data=work.&inputname._scored ;
by Metric_id data_field_name ;
run ;

proc format ;
 value score
 1 = "Pass"
 2 = "Check"
 3 = "Fail"
 ;
 value colorsc /* This format assigns colors to cells */
 1 = 'Light Green'
 2 = 'Cyan'
 3 = 'Very Light Red'
 ;
run ;

Proc sql ;
create table work.filesummary as
select
 Score ,
 put(score,score.) as ScoreLabel ,
 count(distinct Data_field_name) as Columns ,
 count(distinct Metric_ID) as Metrics
from work.&inputname._scored
group by 1 , 2
;

create table work.scoresummary as
select data_field_name ,
 Score ,
 count(distinct Metric_ID) as Metrics
from work.&inputname._scored
group by 1, 2
;
quit ;

proc contents data=sasin.&inputname. noprint out=work.contents ;
run ;

proc sql noprint ;
create table work.contents2 as
select memname ,
 sum(length) as record_length format=comma20.0,
 max(varnum) as number_variables format=comma15.0,
 max(nobs) as Number_records format=comma20.0 ,
 max(crdate) as date_created format=datetime25.
from work.contents
group by memname
;
select put(datepart(max(crdate)),worddate28.) into :filedate /* use of into with : creates a macro variable within SQL */
from work.contents
;

14

select put(timepart(max(crdate)),timeampm12.) into :filetime
from work.contents
;
select memname into :datasetname
from work.contents
quit ;

/* This creates section A of the Report */

%let panelcolumns = 1 ; /* Tells ODS how many panels to use */

ods &_ODSDEST event=panel(start);

data test ;
length text $ 255 ;
text = "Report for %UPCASE(&inputname.) for &client." ;
output ;
run ;

title1 j=center '^S={preimage="http://<path to logo>"}' ;

title2 j=left height=14pt color=gray "Report Created on:"
 j=right height=14pt color=gray "SAS Data: &datasetname." ;
title3
 j=left height=12pt color=gray "%TRIM(%QSYSFUNC(DATE(), worddate28.)) at %TRIM(%SYSFUNC(TIME(),
TIMEAMPM12.))"
 j=right height=12pt color=gray "&filedate. at &filetime." ;

proc report data=test nowd noheader style(report)={rules=none frame=void }
 style(column)={font_weight=bold font_size=20pt just=center foreground=blue /*background=white*/ } ;
run;

ods &_ODSDEST event=panel(finish);

%let panelcolumns = 2 ;

ods &_ODSDEST event=panel(start);

title ;
title2 h=12pt color=blue
 "File Header Information" ;
footnote ;

PROC TABULATE
DATA=WORK.CONTENTS2 ;
 VAR record_length number_variables Number_records date_created;
 CLASS MEMNAME / ORDER=UNFORMATTED MISSING ;
 TABLE
 record_length = "Record Length" *f=comma20.0
 number_variables = "Number of Variables" *f=comma15.0
 Number_records = "Number of Records" *f=comma20.0
 date_created = "Date Created" *f=datetime25.
 ,
 Sum = "" *
 MEMNAME = "SAS Dataset Name" ;
 ;

RUN;

15

title2 h=12pt color=blue
 "Summary Statistics Report" ;
footnote ;
proc print data=work.filesummary label noobs ;
var score / style={background=colorsc.} ; /* This applies the color format */
var Columns metrics ;
sum columns metrics ;
format score score. ;
label Score = "Score"
 Columns = "Number of Columns"
 Metrics = "Number of Metrics"
 ;
format columns
 metrics comma20.0
 ;
run ;

ods &_ODSDEST event=panel(finish);

/* This creates section B of the Report */

%let panelcolumns = 1 ;

ods &_ODSDEST event=panel(start);

title2 h=12pt color=blue
 "Column Summary Report" ;
footnote ;

proc print data=work.scoresummary label noobs ;
var data_field_name ;
var score / style={background=colorsc.} ; /* This applies the color format */
var metrics ;
sum metrics ;
label Data_field_name = "Field Name"

 Metrics = "Number of Metrics"
 ;
format
 metrics comma20.0
 score score.
 ;
run ;

ods &_ODSDEST event=panel(finish);

/* This creates section C of the Report */

%let panelcolumns = 1 ;
ods &_ODSDEST event=panel(start);

title2 h=12pt color=blue
 "Column and Metric Details Report" ;
footnote ;

proc print data= work.&inputname._scored label noobs ;
var metric_id_linked data_field_name metric_label Rows_Failed Rows_Processed Percent_Failed ;
var score / style={background=colorsc.} ;
format score score.

16

 percent_failed percent6.1
 ;
label Data_field_name = "Column Name"
 metric_label = "Metric Description"
;
run ;

ods &_ODSDEST event=panel(finish);

/* This creates section D of the Report */

%let panelcolumns = 2 ;
ods &_ODSDEST event=panel(start);

%macro Freq(num,top) ;

data work.&inputname. ;
set sasin.&inputname. ;
keep
 %do I= 1 %to &num. ;
 &&col&I.. &&col&I.._len
 %end ;
 ;
 %do I = 1 %to &num. ;
 &&col&I.._len = length(&&col&I..) ;
 %end ;
run ;

proc freq data=work.&inputname. noprint order=freq ;

 %do I = 1 %to &num. ;
 table &&col&I.. / missing out=work.F_&&col&I.. ;
 table &&col&I.._len / missing out=work.F_&&col&I.._len ;
 %end ;
run ;

%do I = 1 %to &num. ;
 Title1 "Top &top. Frequency for Values of &&col&i.." ;
 proc print data=work.F_&&col&I.. (obs=&top.) ;
 run ;
 Title1 "Top &top. Frequency for Length of &&col&i.." ;
 proc print data=work.F_&&col&I.._len (obs=&top.) ;
 run ;
%end ;

%mend ;

%Freq(&num.,&top.) ;

ods &_ODSDEST event=panel(finish);

