
Paper 271-27

1

Making your SAS/IntrNet® System Fault Tolerant
Glen Keer, American Express, Phoenix, Arizona

Charles Biggs, American Express, Phoenix, Arizona
Sarah Mitchell, Qualex Consulting Services, West Jordan, Utah

ABSTRACT
An overview of a SAS/IntrNet® System’s Architecture with
redundancy and flexibility built in for fault tolerance along with
ease of growth potential.

Software: Windows 2000, SAS/IntrNet®, SAS/SHARE®,

SAS/ACCESS and Base SAS Software Version 8.2, IIS
5.0, Application Center 2000, HTML, JAVA Script, ASP
and other various web tools.

INTRODUCTION
The project team started with an existing SAS/IntrNet system
using version 6.12 SAS software. This system required changes
because of frequent and significant down time due to many
problems, including applications stepping on each other. The
plan was to strengthen all tools, provide redundancy and further
increase stability by isolating applications. The project went from
having a single SAS/SHARE server and 5 socket services for all
applications to each application having an individual SAS/SHARE
server and pool service.

Duplicating all programs and data across multiple servers created
redundancy. By keeping all items identical, including the names
of SAS/SHARE servers, all SAS programs ran without regard as
to which physical server was executing the intranet request. This
way if one machine went down the other machine would pick up
the slack.

The plan was kept simple yet flexible. Currently, the project has
two Compaq Proliant ML570R01 Application Center 2000
clustered Web Servers, a component server for the Load
Manager, and two Compaq Proliant ML570R01 data servers
balanced by the Load Manager. This system has the flexibility of
growth with minimal changes.

SYSTEMS ARCHITECTURE
The initial infrastructure was comprised of two Compaq 3000
Servers running Windows NT 4.0 with 2GB RAM, 1 IIS4.0 Web
Server and 1 Data Server. The Web applications were
comprised of ASP pages connected to the Data Server thru the
SAS Broker.

The data server contained one SAS/SHARE server, which
managed data for 5 separate applications. Five socket sessions
were available as services for all applications. The data server
housed all SAS data and SAS programs in version 6.12.

The new infrastructure includes 5 Compaq servers, all running
Windows 2000 SP2, two Proliant ML370 Application Center 2000
Web Servers with 2GB RAM, one Compaq DL380 component
server that houses the load manager with 2GB RAM, and two
Compaq Proliant ML570R01 Data Servers with 4GB RAM. The
Web Servers act as one server due to clustering with Virtual IP.
The data servers manage 14 applications, each with its own
SAS/SHARE server and Pool Services.

DATA/APPLICATIONS
There were many changes to the methods of managing
applications. One of the biggest improvements to version 8.2
over 6.12 was work space isolation. Each intranet request has its
own work space. This makes isolating applications much easier.

Changing from 1 set of socket services for all applications to an
individual pool service, this allowed full utilization of resources to
further isolate the data from one application to another. Changing
from one SAS/SHARE session for all applications on one data
server, to one SAS/SHARE session per application duplicated
across two data servers, maintaining the same SAS/SHARE
server names across both machines.

Batch update jobs run on the first data server. All programs were
written independent of the machine they were running on. This
way if the primary batch server gets overloaded the schedule can
be switched to run parts on a different data server with zero code
changes. With any expansion of data servers, updating
programs only need an additional PROC COPY, in order to
update the additional machine.

DATA SERVER
1 SAS/SHARE

Server
5 Socket Services

BEFORE

WEB SERVER

LOAD MANAGER

DATA SERVER 1
14 SAS/SHARE

Servers
14 Pool Services
14 Applications

DATA SERVER 2
14 SAS/SHARE

Servers
14 Pool Services
14 Applications

AFTER

Application Center 2000

WEB SERVER 1 WEB SERVER 2

SUGI 27 Systems Architecture

2

Intranet requests start with the second data server and roll over
to the first data server when capacity per application is hit. All
intranet request programs contain zero knowledge of what server
is executing the job. From time to time changes can be made
with regard to certain applications as to which of the two servers
will control primary execution. This is useful for additional
resource balancing.

Windows back up software runs on the second data server. The
project team chose to separate the update and back up
processes due to resource conflicts. Since both machines have
redundant data, only one needs to be backed up.

LESSONS LEARNED
The first plan was to use a Virtual IP so that the either of the two
Web Servers could talk to either of the two Data Servers as if we
just had one pair of servers. Problem: SAS/IntrNet does not
support Virtual IP. Also, since SAS/SHARE was being used
there would have had to be different names for each
SAS/SHARE server, which would have crippled the flexibility
efforts. There were many potential solutions for this problem, but
it was finalized by having the Load Manager run on a server alone
and clustering only the Web Servers.

The knowledge base of SAS/SHARE was increased. The project
team wrote a member-locking macro, %SYSLOCK, that will loop
until locks are achieved. Note the following SAS Macro:

%macro syslock(_dsn_=,_sec_=5,_loop_=5) /
store
des='Locks shared data';

options mprint mlogic symbolgen;

%global _pass_;
%let _pass_ = 0;

%do _i_ = 1 %to &_loop_;

lock &_dsn_;

%if &syslckrc > 0 %then %do;
data _null_;
x = sleep(&_sec_);

run;
%end;
%else %do;
%let _i_ = %eval(&_loop_ + 1);
%let _pass_ = 1;

%end;

%end;

options nomprint nomlogic nosymbolgen;

%mend syslock;

Just before performing an update to a database the macro is
invoked with the following code.

%syslock(_dsn_=somedb.somefile, _sec_=2,
loop=20);

data _null_;
if &_pass_ then call symput('endit',' ');
else call symput('endit','%put JOB WAS
KILLED; endsas;');

run;

&endit;

This macro will try to obtain a lock up to 20 times, sleeping 2
seconds between each attempt. If the lock cannot be achieved
the program will end. Sometimes it is not desirable for a job to
end or there may be a need to perform other activities, in which
case the code will be slightly different. After the update is
complete the database lock is released with a lock statement:

lock somedb.somefile clear;

The project team wrote another macro, %SYSOPEN, that will
determine if a dataset is locked or can be read. Unlike
%SYSLOCK, %SYSOPEN does not continue to loop a specified
number of times. We did this because reports can be re-ran and
some update processes may be long. If a guarantee is required
then you can alter the following code:

%macro sysopen(_dsn_=,_textin_=) / store
des='checks for lock';

%global _pass_ _blocker_ _blocker_beg_
textout;

%let _pass_ = 1;
%let _textout_ = &_textin_;

data _null_;
rc=open("&_dsn_");
if rc=0 then do;
call symput('_pass_','0');
call symput('_blocker_','*');
call symput('_blocker_beg_','/*');
call symput('_textout_',' ');

end;
run;

%mend sysopen;

This macro sends back a couple of different styles of
commenting, which can be used to conditionally comment SAS
code. The macro variables &_TEXTIN_ and &_TEXTOUT_ are
used to hold the SET Statement or blank in the event that a lock
was in place. Note the following SAS code:

%sysopen(_dsn_=somedb.somefile,
textin= set somefile);

&_blocker_beg_;

data somefile;
set somedb.somefile;

.

.

.
Many more statements;

run;

************/;

data _null_;
file _webout;

&_textout_;

if _n_ = 1 then do;
.
.
.

Many more statements;

if &_pass_=0 then do;
put '<tr><th align=center>Sorry the

data is getting updated - Try
again in a couple of

SUGI 27 Systems Architecture

3

minutes</th></tr>';
put '</body>';
put '</html>';
stop;

end;
end;

.

.

.
Many more statements;

Run;

The development of the log analyzer system has proved to be
crucial to determining problems or inefficiencies throughout all
applications. This system interrogates SAS Log Files, looking for
problems and keeping statistics.

The interfaces and SAS programs were separated. Since
interfaces were easier than programs it was found that a single
web programmer could support several applications. A series of
reviews and system standards were also incorporated. The data
should be pre-manipulated as much as possible in order to keep
the SAS/IntrNet programs simple and quick.

Email notification to text pagers is included for batch update
abends. This way any problems can be fixed before the user
community was affected.

Initially strange abend problems were encountered. The Hot Fix
82ba33 was applied and took care of the abends. This fix can be
downloaded:

http://ftp.sas.com/techsup/download/hotfix/v82ba
a33.html.

Sometimes batch programs would stop in the middle of the job.
This happened because Windows Terminal Server puts
processes to sleep if they have not received either a mouse click
or keyboard input in a given time frame. Microsoft has a
knowledge Base article, Q186628 that states how to control the
sleep timings in the registry. The project team turned the sleep
timing off entirely:

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows20
00\CurrentVersion\TerminalServer\Compatibility\A
pplications\SAS]
“Flags”=dword:00000008
“NthCountMsgQPeeksSleepBadApp” =dword:0000FFFF
“FirstCountMsgQPeeksSleepBadApp”=dword:0000FFFF
“MsgQBadAappSleepTimeInMillisec”=dword:00000000

Some batch jobs do not always clear out of Windows when
finished. When enough jobs remain on the machine problems
with throughput and SAS/SHARE were encountered. By
scheduling weekly re-boots of the data servers all of these “dead
jobs” were removed, thus freeing up capacity.

CONCLUSION
The purpose of the changes outlined in this paper was to provide
a scalable infrastructure with no single point of failure. The goal
was completed with the exception of a single point of failure with
the Load Manager. However, since the Load Manager was
isolated to a component server, it has never been down. The
data, SAS and Web programs are redundant on different
machines, which also helps throughput. Complete separation of
the applications provided additional stability, since one
application is no longer able to take down another.

There are many ways to build SAS/IntrNet infrastructures; this
is not necessarily recommended as the solution for all needs.
However, for this environment, it was a huge win.

ACKNOWLEDGMENTS
Personal and professional thanks should go to Bubba Talley, of
SAS Institute, Technical Support. Bubba has been crucial to the
success of this project.

A special thanks is also extended to the management within
American Express, the PQM Department, Corey Boschee and
Steve Hudson for their vision and support.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. You
may contact any of the three authors listed:

Glen Keer, American Express, Phoenix, Arizona
Glen.A.Keer@aexp.com,

Charles Biggs, American Express, Phoenix, Arizona
Charles.A.Biggs@aexp.com,

Sarah Mitchell, Qualex Consulting Services, West Jordan, Utah
Sarah.Mitchell@qlx.com,

SUGI 27 Systems Architecture

	SUGI 27 Title Page

	trdmk271-27: SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

