
USING SAS INTERGRATION TECHNOLOGIES TO INTERFACE WITH
ENTERPRISE APPLICATIONS WRITTEN IN VISUAL C++

Joseph Nipko, Qualex Consulting Services, Scottsdale, AZ

ABSTRACT
Utilizing SAS as an enterprise IT solution in a distributed Microsoft
Windows environment centered on COM objects written in C++ can
be a challenge for the best of SAS developers. SAS Integration
Technologies exposes a set of COM interfaces that make integrating
SAS with other custom windows applications a relatively pain free
experience. This paper explores the SAS COM Object Model and
demonstrates how to create an integrated application using the
objects in Visual C++. Topics include instantiating and using the
SASWorkspaceManager object, writing custom event handlers for
IOM server runtime events, and using ADO with the IOM OLEDB
Provider to access SAS data sets.

INTRODUCTION
SAS Integration Technologies (IT) provides the foundation that
enables open client access to SAS software. With SAS IT developers
can easily integrate SAS with industry standard tools to create
powerful applications. SAS IT is middleware that greatly enhances
SAS’ ability to access and present data to the user. There are four
main aspects to SAS IT including LDAP directory integration, an
information delivery framework known as Publication/Subscribe,
Message Queuing and an Integrated Object Model (IOM). In this
paper we will focus on the last aspect of SAS IT, the IOM component
and show how we can use this component to easily create windows
programs using Visual C++.

SAS has offered open client access to integrate SAS software with
other application since version 6.0 with OLE Automation interfaces.
There are two important advantages to using the IOM over the Object
OLE Automation interfaces in the SAS system for windows
application development, namely:

• Integration Technologies provides a hierarchy of interfaces,
where as the OLE Automation interface offers only one
interface.

• Applications that use integration technologies objects can run
SAS programs asynchronously

The objects that are part of the IOM are designed mainly to submit
SAS Language statements to a SAS server and get output back from
SAS. A custom Windows application might use the SAS software to
execute of a sequence of data extraction, summarization, analysis,
and presentation steps. The result of these steps may be a collection
of data sets, graphs, and formatted. SAS IT provides an easy route to
executing the SAS programs and then accessing the resulting output.
The IOM interfaces are available with Base SAS on Windows,
however their use is restricted to local COM unless you have licensed
Integration Technologies. The IT license grants you the right to
make IOM calls through DCOM and TCP/IP. Windows clients
accessing IOM servers on non-Windows server platforms use the
IOM Bridge for COM. This bridge allows you to develop native
COM/DCOM applications that access server data, for example, on
UNIX and mainframe platforms. This transparency is a key feature of
SAS Integration Technologies. It enables application developers to
have full access to the architectural elements available in the
Windows environment, even when their clients communicate with
servers in other operating environments.

WORKSPACE
The workspace is the object at the root of the IOM
hierarchy. From this object the application can create:

• Data Service Interface: Provides access to SAS
Library information and contains interfaces for
reading and writing SAS datasets. Developers may
opt to use the IOM Provider instead of accessing
the SAS datasets directly through the Data Service
Interface.

• File Service Interface: Provides an interface to read
and write files and enumerate filerefs defined to
SAS.

• Language Service Interface: Provides an interface
to submit SAS code. Statements can be passed
directly to the Submit function on the interface or
code may reside as a stored process on the server
callable by name.

• Utility Service Interface: Provides interfaces to set
formats, options, and other utility features of a SAS
session.

The entire IOM hierarchy is shown in Figure 1. These
interface definitions are contained in the type library
sas.tlb, consequently to use the IOM objects you'll need to
import this library. Let's take a look at a Visual C++
program that connects to an IOM server, submits a few
SAS statements to the server, and displays the results.

The following code can be used to start a SAS session:
#import "sas.tlb";
…
HRESULT hr;
SAS::IWorkspacePtr pIWorkspace;

hr = pIWorkspace.CreateInstance(
 "SAS.Workspace.1");

Using the newly created Workspace we can submit some
SAS code, display the results in the Visual C++ debug
window and then destroy the SAS server when the we are
finished:

pIWorkspace->LanguageService->Submit(
 "proc sort data=sashelp.prdsale;\
 by year quarter;\
 run;\
 proc means data=sashelp.prdsale;\
 var actual predict;\
 by year quarter;\
 run;");

OutputDebugString(pIWorkspace->
LanguageService->FlushList(10000));

OutputDebugString(pIWorkspace->
LanguageService->FlushLog(10000));

pIWorkspace->Close();

2

Figure 1: SAS IOM hierarchy

In the above example we have only used a few of the
objects available to us through the IOM. In an enterprise
application we would use many of the other features in the
other objects in the hierarchy.

IOM Provider
The IOM Provider delivers access to the SAS data sets that
are defined to the IOM server. The SAS website contains a
detailed explanation of the available interfaces for the
OLEDB provider. These interfaces provide the client
application with a great deal of flexibility in manipulating
the SAS data. However, instead of coding directly with the
IOM Provider interfaces, programs can be developed using
ADO, which is a programming layer on top of the OLEDB
provider. The architecture and functions available with
ADO may be more familiar to the Visual Basic developer.
To demonstrate using the IOM Provider with ADO the
following example will create an ADO connection bind the
connection to the SAS workspace, and create an ADO
record set from the SAS dataset:

_bstr_t strProvider (
 "Provider=SAS.IOMProvider.1; ");

_bstr_t strWorkspace ("SAS Workspace ID="
 + pIWorkspace->UniqueIdentifier);

_bstr_t strConnect = strProvider +
strWorkspace;

_bstr_t strSource (
 "select * from sashelp.prdsale");

ADODB::_ConnectionPtr obConnection;
ADODB::_RecordsetPtr obRecords;

hr = obConnection.CreateInstance(
 __uuidof(ADODB::Connection));

hr = obConnection->Open(strConnect,
_bstr_t(""),
 _bstr_t(""), NULL);

hr = obRecords.CreateInstance(
 __uuidof(ADODB::Recordset));

obRecords->Open(
 strSource,
 _variant_t((IDispatch*)obConnection),
 ADODB::adOpenForwardOnly,
 ADODB::adLockReadOnly,
 ADODB::adCmdText);

Events
The COM events in the IOM server have been
implemented in the standard connection points mechanism
wherein the client application implements an event
interface described by the server. Table 1 gives the event
interfaces that are available in the IOM and the events that
they expose:
In writing a Visual C++ application that can capture these
events there are two main steps involved. First write a
client event class that implements the code for each
desired event type. For example, if we would like the
client application to respond to LanguageService events
we implement a class derived from the
CILanguageService with the event handlers overwritten.

3

Table 1: IOM event interfaces.

Below is the code for the header file for a LanguageService event
handler called CLanguageEventDispatch:

class CLanguageEventDispatch
 :public CComObjectRoot,
 public SAS::CILanguageEvents
{ public:

CLanguageEventDispatch();
virtual ~CLanguageEventDispatch(;

BEGIN_COM_MAP(CLanguageEventDispatch)
 COM_INTERFACE_ENTRY(IUnknown)
 COM_INTERFACE_ENTRY(
 SAS::CILanguageEvents)
END_COM_MAP()

HRESULT _stdcall raw_ProcStart(BSTR Procname);
HRESULT _stdcall raw_SubmitComplete(long Sasrc);
HRESULT _stdcall raw_ProcComplete(BSTR Procname);
HRESULT _stdcall raw_DatastepStart();
HRESULT _stdcall raw_DatastepComplete();
HRESULT _stdcall raw_StepError();

};

An implementation for each of the above functions will also be

needed. In the above header file the BEGIN_COM_MAP,
END_COM_MAP, and COM_INTERFACE_ENTRY
macros are needed to enter the interfaces into the
application COM map so that they may be accessed by the
QueryInterface function.

Next, create an instance of the client event interface and
pass a pointer to this interface to the IOM Server by calling
the Advise function. The following code accomplishes
this:

// Declare a pointer to the client
// event class
CComObject<CLanguageEventDispatch>*
 ptrLanguageEvents;

// Create an Object of the client
// event class
CComObject<CLanguageEventDispatch>::Create
Instance(&ptrLanguageEvents);

// Get the IUnknown interface pointer
// for the active IOM server
pIWorkspace->LanguageService->
 QueryInterface(IID_IUnknown,
 (LPVOID*)&pIUnknownProvider);

// Use the IUnknown pointer from the IOM
// server and the IUnknown interface
// pointer from the client event class
// in a call to AtlAdvise to set up the
// bi-directional communication between
// the two
hr = AtlAdvise(
 pIUnknownProvider,
 ptrLanguageEvents->GetUnknown(),
 __uuidof(SAS::CILanguageEvents),
 &pdw);

After the above code is executed the client application will
receive IOM LanguagueService events. If the application
would like to stop receiving the events, simply call the
unadvised function, as follows:

HRESULT hr;

hr = AtlUnadvise(
 pIUnknownProvider,
 __uuidof(SAS::CILanguageEvents),
 pdw);

WORKSPACEMANAGER
The main job of the WorkspaceManager is to establish and
manage connections with SAS Workspaces. It can also
provide pooling of the interfaces and facilitate ADO
connections to active SAS sessions using the IOM OLEDB
Provider. The WorkspaceManager component is
implemented as a COM Singleton object; consequently,
there will be a single instance of the WorkspaceManager
class in any given process. This design provides a great
deal of flexibility in the development of custom Windows
applications. It allows the WorkspaceManager to provide
pooling services since multiple workspaces can be used on
different threads. Similarly, a single SAS IOM Workspace
can be shared between multiple threads within the same
process.

There are two ways to use the WorkspaceManager to
establish a connection to SAS:

Unadministered, standalone
In this case all of the connection information for the
workspace is hard coded. Below is an example of code

Event Interface Events

Hierarchy

HierarchyClose

Directory

DirectoryClose

HTMLFileOpen

HTMLAnchor

HTMLFileClose

Output

HTMLText

CIODSEvents

HTMLMark

ProcStart

SubmitComplete

ProcComplete

DatastepStart

DatastepComplete

CILanguageEvents

StepError

LibraryAssign
CIDataServiceEvents

LibraryDeassign

MemberCreate

MemberDelete

MemberReplace
CIDataServiceMemEvents

MemberRename

MemberCreate

MemberDelete

MemberRename
CILibrefEvents

MemberReplace

FileOpen

FileClose

DirectoryBegin

DirectoryEnd

OutputElement

CIODSFileEvents

AnchorElement

4

that could be used to create an instance of a SAS on a local
machine:

SASWorkspaceManager::IWorkspaceManager2Ptr
pIWorkspaceManager;
BSTR xmlInfo;
SAS::IWorkspacePtr pIWorkspace;
HRESULT hr;

hr =
pIWorkspaceManager.CreateInstance("SASWorkspaceMa
nager.WorkspaceManager.1");

pIWorkspace=pIWorkspaceManager->
 Workspaces->CreateWorkspaceByServer(

// Name of the workspace to be created
_bstr_t("localsas"),

// Visibility of the created workspace
SASWorkspaceManager::VisibilityProcess,

// pointer to a ServerDef object that is
// used to set the connection information
NULL,

// Login name to run the SAS server under
// ignored for local SAS connections
_bstr_t(""),

// Password for Login Name above
_bstr_t(""),

// XML table that describes the connection
// attempts
&xmlInfo);

One reason for using an unadministered connection is that we can
specify the “visibility” of the server. There are two settings:
VisibiliyNone which means the WorkspaceManager will not keep
track of the created workspace and VisibilityProcess which specifies
that all calls within the same process can access the created
workspace. The visibility set to VisibilityProcess will allow an ADO
connection to the Workspace.

Administered, networked
This allows launching of SAS Workspaces from a shared repository
(either in a file or LDAP server). SAS IT ships with the Integration
Technologies Administrator, which can create the connection
information on an LDAP server. To establish the connection to a
remote SAS machine where the connection information has been
administered into LDAP, use the same variables as in the
unadministered case but make the following function call:

pIWorkspace=pIWorkspaceManager->
 Workspaces-> CreateWorkspaceByLogicalName(

// name of the workspace can be used to
// access the workspace

_bstr_t ("workspacename"),

// visibility of the process

SASWorkspaceManager::VisibilityNone,

// logical name used to lookup the
// connection information

_bstr_t("LogicalName"),

// ReferenceDN used to give login
// information if the COM Bridge
// is used

_bstr_t(""),

// Describes the connection attempts

&xmlInfo);

Workspace Pooling
Workspace pooling allows the developer to create a pool of
connections to IOM servers that can be shared among
several client processes. If the client processes make many
brief connections to the IOM server, pooling can help
reduce connection times. There are two different
mechanisms for workspace pooling that are supported by
the WorkspaceManager:

• Integration Technologies Pooling: In this type of
pooling the pooled workspaces are configured by LDAP,
an LDIF-formatted file or by hard coding the server
parameters in the code. For a detailed account of this
type of pooling see the SAS IT website.

• COM+ Pooling: This type of pooling is only
available on platforms that support COM+, such as
Windows 2000. There are two options for configuring
this type of pooling, either as a Library application in
which each process has its own pool or as a Server
application where the pool is shared by all the processes
on the same machine.
A COM+ pool is administered using the Microsoft
Management Console (MMC) that is distributed with
Windows 2000. Setting up the pooled workspace using
the MMC is a straight forward task facilitated by the
wizards available in the MMC. The SAS IT web site

gives a step by step explanation of the procedure.

Once the PooledWorkspace is registered with COM+ the
following code can be used to get a pooled workspace:

// Set the COM/DCOM security
hr = CoInitializeSecurity(
NULL,-1,NULL,NULL,
RPC_C_AUTHN_LEVEL_NONE,
RPC_C_IMP_LEVEL_IMPERSONATE,
NULL,0x0,NULL);

SASWorkspaceManager::IPooledWorkspacePtr
pIPooledWorkspace;

// Create an instance of the pooled
// workspace
hr = pIPooledWorkspace.CreateInstance(
"SASWorkspaceManager.PooledWorkspace");

//
pIWorkspace = pIPooledWorkspace->
 GetWorkspace();

You must call the CoinitializeSecurity function to set the
COM security level before calling CreateInstance. In the
above section of code I've set the DCOM security level to
NONE for the application. You can manage the security
settings for DCOM through the use of the DCOMCNFG
utility which is detailed in a Microsoft FAQ on COM
security. The pooled workspace can be used, for example,
to submit SAS statements through the LanguageService.
However if the programmer desires an ADO connection to
the SAS server through the IOM Provider then we need to
have the Workspace managed by the WorkspaceManager
with the visibility set to VisibilityProcess. The

5

AddExternalWorkspace function in the Workspaces collection of the
WorkspaceManager can be used for this purpose as follows:

hr = pIWorkspaceManager->Workspaces->
AddExternalWorkspace(

// Set the visibility of the
// added workspace
SASWorkspaceManager::VisibilityProcess,

// pass the pooled workspace pointer
pIWorkspace);

CONCLUSION
The introduction of the open client architecture supplied by SAS
through Integration Technologies makes it easy to create powerful
custom Windows applications. With SAS IT companies already
using SAS as an analytic tool can quickly and easily use this
technology to integrate SAS programs into custom enterprise
applications.

REFERENCES
SAS Integration Technologies Library

http://www.sas.com/rnd/itech/library/index.html

SAS Integration Technologies Overview White Paper

Steve Jenisch

 Microsoft COM Security FAQ:

http://support.microsoft.com/support/kb/articles/Q158/5/08.asp

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact
the author at:

Joseph Nipko
 Qualex Consulting Services, Inc
 15947 N 102nd Place
 Scottsdale, AZ 85255
 Work Phone: 602-410-4552
 Fax: 815-550-5182
 E-mail Address: joe@qlx.com

